Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Difficulty Adjustment via Fast User Adaptation (2006.15545v1)

Published 28 Jun 2020 in cs.HC

Abstract: Dynamic difficulty adjustment (DDA) is a technology that adapts a game's challenge to match the player's skill. It is a key element in game development that provides continuous motivation and immersion to the player. However, conventional DDA methods require tuning in-game parameters to generate the levels for various players. Recent DDA approaches based on deep learning can shorten the time-consuming tuning process, but require sufficient user demo data for adaptation. In this paper, we present a fast user adaptation method that can adjust the difficulty of the game for various players using only a small amount of demo data by applying a meta-learning algorithm. In the video game environment user test (n=9), our proposed DDA method outperformed a typical deep learning-based baseline method.

Citations (17)

Summary

We haven't generated a summary for this paper yet.