Interpretable Polynomial Neural Ordinary Differential Equations (2208.05072v1)
Abstract: Neural networks have the ability to serve as universal function approximators, but they are not interpretable and don't generalize well outside of their training region. Both of these issues are problematic when trying to apply standard neural ordinary differential equations (neural ODEs) to dynamical systems. We introduce the polynomial neural ODE, which is a deep polynomial neural network inside of the neural ODE framework. We demonstrate the capability of polynomial neural ODEs to predict outside of the training region, as well as perform direct symbolic regression without additional tools such as SINDy.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.