Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding Capabilities of Neural ODEs (2308.01213v2)

Published 2 Aug 2023 in math.DS and cs.NE

Abstract: A class of neural networks that gained particular interest in the last years are neural ordinary differential equations (neural ODEs). We study input-output relations of neural ODEs using dynamical systems theory and prove several results about the exact embedding of maps in different neural ODE architectures in low and high dimension. The embedding capability of a neural ODE architecture can be increased by adding, for example, a linear layer, or augmenting the phase space. Yet, there is currently no systematic theory available and our work contributes towards this goal by developing various embedding results as well as identifying situations, where no embedding is possible. The mathematical techniques used include as main components iterative functional equations, Morse functions and suspension flows, as well as several further ideas from analysis. Although practically, mainly universal approximation theorems are used, our geometric dynamical systems viewpoint on universal embedding provides a fundamental understanding, why certain neural ODE architectures perform better than others.

Citations (3)

Summary

We haven't generated a summary for this paper yet.