Papers
Topics
Authors
Recent
2000 character limit reached

Equilibrium states for partially hyperbolic maps with one-dimensional center

Published 12 Jul 2022 in math.DS | (2207.05823v3)

Abstract: We prove the existence of equilibrium states for partially hyperbolic endomorphisms with one-dimensional center bundle. We also prove, regarding a class of potentials, the uniqueness of such measures for endomorphisms defined on the 2-torus that: have a linear model as a factor; and with the condition that this measure gives zero weight to the set where the conjugacy with the linear model fails to be invertible. In particular, we obtain the uniqueness of the measure of maximal entropy. For the n-torus, the uniqueness in the case with one-dimensional center holds for absolutely partially hyperbolic maps with additional hypotheses on the invariant leaves, namely, dynamical coherence and quasi-isometry.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.