Papers
Topics
Authors
Recent
2000 character limit reached

Measures of maximal entropy for non-uniformly hyperbolic maps

Published 7 May 2024 in math.DS | (2405.04676v1)

Abstract: For $C{1+}$ maps, possibly non-invertible and with singularities, we prove that each homoclinic class of an adapted hyperbolic measure carries at most one adapted hyperbolic measure of maximal entropy. We then apply this to study the finiteness/uniqueness of such measures in several different settings: finite horizon dispersing billiards, codimension one partially hyperbolic endomorphisms with "large" entropy, robustly non-uniformly hyperbolic volume-preserving endomorphisms as in Andersson-Carrasco-Saghin, and strongly transitive non-uniformly expanding maps.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.