Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Maximizing measures for partially hyperbolic systems with compact center leaves (1010.3372v1)

Published 16 Oct 2010 in math.DS

Abstract: We obtain the following dichotomy for accessible partially hyperbolic diffeomorphisms of 3-dimensional manifolds having compact center leaves: either there is a unique entropy maximizing measure, this measure has the Bernoulli property and its center Lyapunov exponent is 0 or, there is a finite number of entropy maximizing measures, all of them with nonzero center Lyapunov exponent (at least one with negative exponent and one with positive exponent), that are finite extensions of a Bernoulli system. In the first case of the dichotomy we obtain that the system is topologically conjugated to a rotation extension of a hyperbolic system. This implies that the second case of the dichotomy holds for an open and dense set of diffeomorphisms in the hypothesis of our result. As a consequence we obtain an open set of topologically mixing diffeomorphisms having more than one entropy maximizing measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.