Papers
Topics
Authors
Recent
Search
2000 character limit reached

DiSCoMaT: Distantly Supervised Composition Extraction from Tables in Materials Science Articles

Published 3 Jul 2022 in cs.CL, cond-mat.mtrl-sci, and cs.IR | (2207.01079v4)

Abstract: A crucial component in the curation of KB for a scientific domain (e.g., materials science, foods & nutrition, fuels) is information extraction from tables in the domain's published research articles. To facilitate research in this direction, we define a novel NLP task of extracting compositions of materials (e.g., glasses) from tables in materials science papers. The task involves solving several challenges in concert, such as tables that mention compositions have highly varying structures; text in captions and full paper needs to be incorporated along with data in tables; and regular languages for numbers, chemical compounds and composition expressions must be integrated into the model. We release a training dataset comprising 4,408 distantly supervised tables, along with 1,475 manually annotated dev and test tables. We also present a strong baseline DISCOMAT, that combines multiple graph neural networks with several task-specific regular expressions, features, and constraints. We show that DISCOMAT outperforms recent table processing architectures by significant margins.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.