Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scientific Table Search Using Keyword Queries (1707.03423v1)

Published 11 Jul 2017 in cs.IR

Abstract: Tables are common and important in scientific documents, yet most text-based document search systems do not capture structures and semantics specific to tables. How to bridge different types of mismatch between keywords queries and scientific tables and what influences ranking quality needs to be carefully investigated. This paper considers the structure of tables and gives different emphasis to table components. On the query side, thanks to external knowledge such as knowledge bases and ontologies, key concepts are extracted and used to build structured queries, and target quantity types are identified and used to expand original queries. A probabilistic framework is proposed to incorporate structural and semantic information from both query and table sides. We also construct and release TableArXiv, a high quality dataset with 105 queries and corresponding relevance judgements for scientific table search. Experiments demonstrate significantly higher accuracy overall and at the top of the rankings than several baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kyle Yingkai Gao (2 papers)
  2. Jamie Callan (43 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.