Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAIL-PT: A Generic Intelligent Penetration Testing Framework with Generative Adversarial Imitation Learning (2204.01975v1)

Published 5 Apr 2022 in cs.CR and cs.LG

Abstract: Penetration testing (PT) is an efficient network testing and vulnerability mining tool by simulating a hacker's attack for valuable information applied in some areas. Compared with manual PT, intelligent PT has become a dominating mainstream due to less time-consuming and lower labor costs. Unfortunately, RL-based PT is still challenged in real exploitation scenarios because the agent's action space is usually high-dimensional discrete, thus leading to algorithm convergence difficulty. Besides, most PT methods still rely on the decisions of security experts. Addressing the challenges, for the first time, we introduce expert knowledge to guide the agent to make better decisions in RL-based PT and propose a Generative Adversarial Imitation Learning-based generic intelligent Penetration testing framework, denoted as GAIL-PT, to solve the problems of higher labor costs due to the involvement of security experts and high-dimensional discrete action space. Specifically, first, we manually collect the state-action pairs to construct an expert knowledge base when the pre-trained RL / DRL model executes successful penetration testings. Second, we input the expert knowledge and the state-action pairs generated online by the different RL / DRL models into the discriminator of GAIL for training. At last, we apply the output reward of the discriminator to guide the agent to perform the action with a higher penetration success rate to improve PT's performance. Extensive experiments conducted on the real target host and simulated network scenarios show that GAIL-PT achieves the SOTA penetration performance against DeepExploit in exploiting actual target Metasploitable2 and Q-learning in optimizing penetration path, not only in small-scale with or without honey-pot network environments but also in the large-scale virtual network environment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jinyin Chen (52 papers)
  2. Shulong Hu (1 paper)
  3. Haibin Zheng (31 papers)
  4. Changyou Xing (1 paper)
  5. Guomin Zhang (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.