Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Reinforcement Learning for Autonomous Penetration Testing using A3C, Q-learning and DQN (2407.15656v1)

Published 22 Jul 2024 in cs.CR and cs.AI

Abstract: Penetration testing is the process of searching for security weaknesses by simulating an attack. It is usually performed by experienced professionals, where scanning and attack tools are applied. By automating the execution of such tools, the need for human interaction and decision-making could be reduced. In this work, a Network Attack Simulator (NASim) was used as an environment to train reinforcement learning agents to solve three predefined security scenarios. These scenarios cover techniques of exploitation, post-exploitation and wiretapping. A large hyperparameter grid search was performed to find the best hyperparameter combinations. The algorithms Q-learning, DQN and A3C were used, whereby A3C was able to solve all scenarios and achieve generalization. In addition, A3C could solve these scenarios with fewer actions than the baseline automated penetration testing. Although the training was performed on rather small scenarios and with small state and action spaces for the agents, the results show that a penetration test can successfully be performed by the RL agent.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com