Papers
Topics
Authors
Recent
2000 character limit reached

Robust Disentangled Variational Speech Representation Learning for Zero-shot Voice Conversion

Published 30 Mar 2022 in eess.AS, cs.AI, cs.CL, and eess.SP | (2203.16705v1)

Abstract: Traditional studies on voice conversion (VC) have made progress with parallel training data and known speakers. Good voice conversion quality is obtained by exploring better alignment modules or expressive mapping functions. In this study, we investigate zero-shot VC from a novel perspective of self-supervised disentangled speech representation learning. Specifically, we achieve the disentanglement by balancing the information flow between global speaker representation and time-varying content representation in a sequential variational autoencoder (VAE). A zero-shot voice conversion is performed by feeding an arbitrary speaker embedding and content embeddings to the VAE decoder. Besides that, an on-the-fly data augmentation training strategy is applied to make the learned representation noise invariant. On TIMIT and VCTK datasets, we achieve state-of-the-art performance on both objective evaluation, i.e., speaker verification (SV) on speaker embedding and content embedding, and subjective evaluation, i.e., voice naturalness and similarity, and remains to be robust even with noisy source/target utterances.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.