Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StyleTTS-VC: One-Shot Voice Conversion by Knowledge Transfer from Style-Based TTS Models (2212.14227v1)

Published 29 Dec 2022 in eess.AS and cs.SD

Abstract: One-shot voice conversion (VC) aims to convert speech from any source speaker to an arbitrary target speaker with only a few seconds of reference speech from the target speaker. This relies heavily on disentangling the speaker's identity and speech content, a task that still remains challenging. Here, we propose a novel approach to learning disentangled speech representation by transfer learning from style-based text-to-speech (TTS) models. With cycle consistent and adversarial training, the style-based TTS models can perform transcription-guided one-shot VC with high fidelity and similarity. By learning an additional mel-spectrogram encoder through a teacher-student knowledge transfer and novel data augmentation scheme, our approach results in disentangled speech representation without needing the input text. The subjective evaluation shows that our approach can significantly outperform the previous state-of-the-art one-shot voice conversion models in both naturalness and similarity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yinghao Aaron Li (15 papers)
  2. Cong Han (27 papers)
  3. Nima Mesgarani (45 papers)
Citations (15)