Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Zero-shot Voice Style Transfer via Disentangled Representation Learning (2103.09420v1)

Published 17 Mar 2021 in eess.AS and cs.SD

Abstract: Voice style transfer, also called voice conversion, seeks to modify one speaker's voice to generate speech as if it came from another (target) speaker. Previous works have made progress on voice conversion with parallel training data and pre-known speakers. However, zero-shot voice style transfer, which learns from non-parallel data and generates voices for previously unseen speakers, remains a challenging problem. We propose a novel zero-shot voice transfer method via disentangled representation learning. The proposed method first encodes speaker-related style and voice content of each input voice into separated low-dimensional embedding spaces, and then transfers to a new voice by combining the source content embedding and target style embedding through a decoder. With information-theoretic guidance, the style and content embedding spaces are representative and (ideally) independent of each other. On real-world VCTK datasets, our method outperforms other baselines and obtains state-of-the-art results in terms of transfer accuracy and voice naturalness for voice style transfer experiments under both many-to-many and zero-shot setups.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Siyang Yuan (9 papers)
  2. Pengyu Cheng (23 papers)
  3. Ruiyi Zhang (98 papers)
  4. Weituo Hao (16 papers)
  5. Zhe Gan (135 papers)
  6. Lawrence Carin (203 papers)
Citations (58)