Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S2-Net: Self-supervision Guided Feature Representation Learning for Cross-Modality Images (2203.14581v1)

Published 28 Mar 2022 in cs.CV

Abstract: Combining the respective advantages of cross-modality images can compensate for the lack of information in the single modality, which has attracted increasing attention of researchers into multi-modal image matching tasks. Meanwhile, due to the great appearance differences between cross-modality image pairs, it often fails to make the feature representations of correspondences as close as possible. In this letter, we design a cross-modality feature representation learning network, S2-Net, which is based on the recently successful detect-and-describe pipeline, originally proposed for visible images but adapted to work with cross-modality image pairs. To solve the consequent problem of optimization difficulties, we introduce self-supervised learning with a well-designed loss function to guide the training without discarding the original advantages. This novel strategy simulates image pairs in the same modality, which is also a useful guide for the training of cross-modality images. Notably, it does not require additional data but significantly improves the performance and is even workable for all methods of the detect-and-describe pipeline. Extensive experiments are conducted to evaluate the performance of the strategy we proposed, compared to both handcrafted and deep learning-based methods. Results show that our elegant formulation of combined optimization of supervised and self-supervised learning outperforms state-of-the-arts on RoadScene and RGB-NIR datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.