Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural-Symbolic Approach to Natural Language Understanding (2203.10557v2)

Published 20 Mar 2022 in cs.CL

Abstract: Deep neural networks, empowered by pre-trained LLMs, have achieved remarkable results in natural language understanding (NLU) tasks. However, their performances can drastically deteriorate when logical reasoning is needed. This is because NLU in principle depends on not only analogical reasoning, which deep neural networks are good at, but also logical reasoning. According to the dual-process theory, analogical reasoning and logical reasoning are respectively carried out by System 1 and System 2 in the human brain. Inspired by the theory, we present a novel framework for NLU called Neural-Symbolic Processor (NSP), which performs analogical reasoning based on neural processing and logical reasoning based on both neural and symbolic processing. As a case study, we conduct experiments on two NLU tasks, question answering (QA) and natural language inference (NLI), when numerical reasoning (a type of logical reasoning) is necessary. The experimental results show that our method significantly outperforms state-of-the-art methods in both tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhixuan Liu (14 papers)
  2. Zihao Wang (216 papers)
  3. Yuan Lin (55 papers)
  4. Hang Li (277 papers)
Citations (5)