Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Graph Matching for Pre-training Graph Neural Networks (2203.01597v1)

Published 3 Mar 2022 in cs.LG

Abstract: Recently, graph neural networks (GNNs) have been shown powerful capacity at modeling structural data. However, when adapted to downstream tasks, it usually requires abundant task-specific labeled data, which can be extremely scarce in practice. A promising solution to data scarcity is to pre-train a transferable and expressive GNN model on large amounts of unlabeled graphs or coarse-grained labeled graphs. Then the pre-trained GNN is fine-tuned on downstream datasets with task-specific fine-grained labels. In this paper, we present a novel Graph Matching based GNN Pre-Training framework, called GMPT. Focusing on a pair of graphs, we propose to learn structural correspondences between them via neural graph matching, consisting of both intra-graph message passing and inter-graph message passing. In this way, we can learn adaptive representations for a given graph when paired with different graphs, and both node- and graph-level characteristics are naturally considered in a single pre-training task. The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training. We further propose an approximate contrastive training strategy to significantly reduce time/memory consumption. Extensive experiments on multi-domain, out-of-distribution benchmarks have demonstrated the effectiveness of our approach. The code is available at: https://github.com/RUCAIBox/GMPT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yupeng Hou (33 papers)
  2. Binbin Hu (42 papers)
  3. Wayne Xin Zhao (196 papers)
  4. Zhiqiang Zhang (129 papers)
  5. Jun Zhou (370 papers)
  6. Ji-Rong Wen (299 papers)
Citations (7)