Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty (2203.00551v3)

Published 1 Mar 2022 in cs.RO, cs.AI, cs.LG, and math.OC

Abstract: We propose an adaptive optimisation approach for tuning stochastic model predictive control (MPC) hyper-parameters while jointly estimating probability distributions of the transition model parameters based on performance rewards. In particular, we develop a Bayesian optimisation (BO) algorithm with a heteroscedastic noise model to deal with varying noise across the MPC hyper-parameter and dynamics model parameter spaces. Typical homoscedastic noise models are unrealistic for tuning MPC since stochastic controllers are inherently noisy, and the level of noise is affected by their hyper-parameter settings. We evaluate the proposed optimisation algorithm in simulated control and robotics tasks where we jointly infer control and dynamics parameters. Experimental results demonstrate that our approach leads to higher cumulative rewards and more stable controllers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.