Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-loop Performance Optimization of Model Predictive Control with Robustness Guarantees (2403.04655v2)

Published 7 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: Model mismatch and process noise are two frequently occurring phenomena that can drastically affect the performance of model predictive control (MPC) in practical applications. We propose a principled way to tune the cost function and the constraints of linear MPC schemes to improve the closed-loop performance and robust constraint satisfaction on uncertain nonlinear dynamics with additive noise. The tuning is performed using a novel MPC tuning algorithm based on backpropagation developed in our earlier work. Using the scenario approach, we provide probabilistic bounds on the likelihood of closed-loop constraint violation over a finite horizon. We showcase the effectiveness of the proposed method on linear and nonlinear simulation examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, and P. Falugi, “Tube-based robust nonlinear model predictive control,” International journal of robust and nonlinear control, vol. 21, no. 11, pp. 1341–1353, 2011.
  2. L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent disturbances: predictive control with restricted constraints,” Automatica, vol. 37, no. 7, pp. 1019–1028, 2001.
  3. J. Fleming, B. Kouvaritakis, and M. Cannon, “Robust tube mpc for linear systems with multiplicative uncertainty,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 1087–1092, 2014.
  4. M. Bujarbaruah, X. Zhang, M. Tanaskovic, and F. Borrelli, “Adaptive mpc under time varying uncertainty: Robust and stochastic,” arXiv preprint arXiv:1909.13473, 2019.
  5. J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally efficient robust model predictive control framework for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 794–801, 2020.
  6. I. M. Ross, Q. Gong, M. Karpenko, and R. Proulx, “Scaling and balancing for high-performance computation of optimal controls,” Journal of Guidance, Control, and Dynamics, vol. 41, no. 10, pp. 2086–2097, 2018.
  7. M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems and control design,” Annual Reviews in Control, vol. 33, no. 2, pp. 149–157, 2009.
  8. G. C. Calafiore and L. Fagiano, “Robust model predictive control via scenario optimization,” IEEE Transactions on Automatic Control, vol. 58, no. 1, pp. 219–224, 2012.
  9. G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, 2014.
  10. F. Micheli and J. Lygeros, “Scenario-based stochastic mpc for systems with uncertain dynamics,” in 2022 European Control Conference (ECC).   IEEE, 2022, pp. 833–838.
  11. R. Zuliani, E. C. Balta, and J. Lygeros, “BP-MPC: Optimizing Closed-Loop Performance of MPC using BackPropagation,” arXiv preprint arXiv:2312.15521, 2023.
  12. A. Zhakatayev, B. Rakhim, O. Adiyatov, A. Baimyshev, and H. A. Varol, “Successive linearization based model predictive control of variable stiffness actuated robots,” in 2017 IEEE international conference on advanced intelligent mechatronics (AIM).   IEEE, 2017, pp. 1774–1779.
  13. J. V. Burke, “An exact penalization viewpoint of constrained optimization,” SIAM Journal on control and optimization, vol. 29, no. 4, pp. 968–998, 1991.
  14. J. Bolte, T. Le, E. Pauwels, and T. Silveti-Falls, “Nonsmooth implicit differentiation for machine-learning and optimization,” Advances in neural information processing systems, vol. 34, pp. 13 537–13 549, 2021.
  15. D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee, “Stochastic subgradient method converges on tame functions,” Foundations of computational mathematics, vol. 20, no. 1, pp. 119–154, 2020.
  16. M. C. Campi, S. Garatti, and F. A. Ramponi, “A general scenario theory for nonconvex optimization and decision making,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4067–4078, 2018.
  17. K. Guemghar, B. Srinivasan, P. Mullhaupt, and D. Bonvin, “Predictive control of fast unstable and nonminimum-phase nonlinear systems,” in Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 6.   IEEE, 2002, pp. 4764–4769.
  18. D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005.

Summary

We haven't generated a summary for this paper yet.