Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining the Silhouette and Skeleton Data for Gait Recognition (2202.10645v3)

Published 22 Feb 2022 in cs.CV

Abstract: Gait recognition, a long-distance biometric technology, has aroused intense interest recently. Currently, the two dominant gait recognition works are appearance-based and model-based, which extract features from silhouettes and skeletons, respectively. However, appearance-based methods are greatly affected by clothes-changing and carrying conditions, while model-based methods are limited by the accuracy of pose estimation. To tackle this challenge, a simple yet effective two-branch network is proposed in this paper, which contains a CNN-based branch taking silhouettes as input and a GCN-based branch taking skeletons as input. In addition, for better gait representation in the GCN-based branch, we present a fully connected graph convolution operator to integrate multi-scale graph convolutions and alleviate the dependence on natural joint connections. Also, we deploy a multi-dimension attention module named STC-Att to learn spatial, temporal and channel-wise attention simultaneously. The experimental results on CASIA-B and OUMVLP show that our method achieves state-of-the-art performance in various conditions.

Citations (19)

Summary

We haven't generated a summary for this paper yet.