Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-based gait recognition using graph network on very large population database (2112.10305v1)

Published 20 Dec 2021 in cs.CV

Abstract: At present, the existing gait recognition systems are focusing on developing methods to extract robust gait feature from silhouette images and they indeed achieved great success. However, gait can be sensitive to appearance features such as clothing and carried items. Compared with appearance-based method, model-based gait recognition is promising due to the robustness against these variations. In recent years, with the development of human pose estimation, the difficulty of model-based gait recognition methods has been mitigated. In this paper, to resist the increase of subjects and views variation, local features are built and a siamese network is proposed to maximize the distance of samples from the same subject. We leverage recent advances in action recognition to embed human pose sequence to a vector and introduce Spatial-Temporal Graph Convolution Blocks (STGCB) which has been commonly used in action recognition for gait recognition. Experiments on the very large population dataset named OUMVLP-Pose and the popular dataset, CASIA-B, show that our method archives some state-of-the-art (SOTA) performances in model-based gait recognition. The code and models of our method are available at https://github.com/timelessnaive/Gait-for-Large-Dataset after being accepted.

Citations (3)

Summary

We haven't generated a summary for this paper yet.