Papers
Topics
Authors
Recent
2000 character limit reached

A Distributed Algorithm for Measure-valued Optimization with Additive Objective

Published 17 Feb 2022 in math.OC, cs.LG, cs.SY, and eess.SY | (2202.08930v1)

Abstract: We propose a distributed nonparametric algorithm for solving measure-valued optimization problems with additive objectives. Such problems arise in several contexts in stochastic learning and control including Langevin sampling from an unnormalized prior, mean field neural network learning and Wasserstein gradient flows. The proposed algorithm comprises a two-layer alternating direction method of multipliers (ADMM). The outer-layer ADMM generalizes the Euclidean consensus ADMM to the Wasserstein consensus ADMM, and to its entropy-regularized version Sinkhorn consensus ADMM. The inner-layer ADMM turns out to be a specific instance of the standard Euclidean ADMM. The overall algorithm realizes operator splitting for gradient flows in the manifold of probability measures.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.