Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Distributed ADMM Algorithm for Consensus Optimization in Presence of Node Error (1901.02436v1)

Published 8 Jan 2019 in eess.SP and cs.DC

Abstract: Alternating Direction Method of Multipliers (ADMM) is a popular convex optimization algorithm, which can be employed for solving distributed consensus optimization problems. In this setting agents locally estimate the optimal solution of an optimization problem and exchange messages with their neighbors over a connected network. The distributed algorithms are typically exposed to different types of errors in practice, e.g., due to quantization or communication noise or loss. We here focus on analyzing the convergence of distributed ADMM for consensus optimization in presence of additive random node error, in which case, the nodes communicate a noisy version of their latest estimate of the solution to their neighbors in each iteration. We present analytical upper and lower bounds on the mean squared steady state error of the algorithm in case that the local objective functions are strongly convex and have Lipschitz continuous gradients. In addition we show that, when the local objective functions are convex and the additive node error is bounded, the estimation error of the noisy ADMM for consensus optimization is also bounded. Numerical results are provided which demonstrate the effectiveness of the presented analyses and shed light on the role of the system and network parameters on performance.

Citations (32)

Summary

We haven't generated a summary for this paper yet.