Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convolutional Cobweb: A Model of Incremental Learning from 2D Images (2201.06740v1)

Published 18 Jan 2022 in cs.CV, cs.AI, and cs.LG

Abstract: This paper presents a new concept formation approach that supports the ability to incrementally learn and predict labels for visual images. This work integrates the idea of convolutional image processing, from computer vision research, with a concept formation approach that is based on psychological studies of how humans incrementally form and use concepts. We experimentally evaluate this new approach by applying it to an incremental variation of the MNIST digit recognition task. We compare its performance to Cobweb, a concept formation approach that does not support convolutional processing, as well as two convolutional neural networks that vary in the complexity of their convolutional processing. This work represents a first step towards unifying modern computer vision ideas with classical concept formation research.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.