Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Efficient Induction of Language Models Via Probabilistic Concept Formation (2212.11937v1)

Published 22 Dec 2022 in cs.CL, cs.AI, and cs.LG

Abstract: This paper presents a novel approach to the acquisition of LLMs from corpora. The framework builds on Cobweb, an early system for constructing taxonomic hierarchies of probabilistic concepts that used a tabular, attribute-value encoding of training cases and concepts, making it unsuitable for sequential input like language. In response, we explore three new extensions to Cobweb -- the Word, Leaf, and Path variants. These systems encode each training case as an anchor word and surrounding context words, and they store probabilistic descriptions of concepts as distributions over anchor and context information. As in the original Cobweb, a performance element sorts a new instance downward through the hierarchy and uses the final node to predict missing features. Learning is interleaved with performance, updating concept probabilities and hierarchy structure as classification occurs. Thus, the new approaches process training cases in an incremental, online manner that it very different from most methods for statistical language learning. We examine how well the three variants place synonyms together and keep homonyms apart, their ability to recall synonyms as a function of training set size, and their training efficiency. Finally, we discuss related work on incremental learning and directions for further research.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.