Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Networks in Visual Environments (1801.07110v1)

Published 16 Jan 2018 in cs.CV and cs.LG

Abstract: The puzzle of computer vision might find new challenging solutions when we realize that most successful methods are working at image level, which is remarkably more difficult than processing directly visual streams. In this paper, we claim that their processing naturally leads to formulate the motion invariance principle, which enables the construction of a new theory of learning with convolutional networks. The theory addresses a number of intriguing questions that arise in natural vision, and offers a well-posed computational scheme for the discovery of convolutional filters over the retina. They are driven by differential equations derived from the principle of least cognitive action. Unlike traditional convolutional networks, which need massive supervision, the proposed theory offers a truly new scenario in which feature learning takes place by unsupervised processing of video signals. It is pointed out that an opportune blurring of the video, along the interleaving of segments of null signal, make it possible to conceive a novel learning mechanism that yields the minimum of the cognitive action. Basically, while the theory enables the implementation of novel computer vision systems, it is also provides an intriguing explanation of the solution that evolution has discovered for humans, where it looks like that the video blurring in newborns and the day-night rhythm seem to emerge in a general computational framework, regardless of biology.

Citations (7)

Summary

We haven't generated a summary for this paper yet.