Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Probabilistic Circuits (2112.04941v1)

Published 9 Dec 2021 in cs.DS and cs.DM

Abstract: Probabilistic circuits (PCs) are a powerful modeling framework for representing tractable probability distributions over combinatorial spaces. In machine learning and probabilistic programming, one is often interested in understanding whether the distributions learned using PCs are close to the desired distribution. Thus, given two probabilistic circuits, a fundamental problem of interest is to determine whether their distributions are close to each other. The primary contribution of this paper is a closeness test for PCs with respect to the total variation distance metric. Our algorithm utilizes two common PC queries, counting and sampling. In particular, we provide a poly-time probabilistic algorithm to check the closeness of two PCs when the PCs support tractable approximate counting and sampling. We demonstrate the practical efficiency of our algorithmic framework via a detailed experimental evaluation of a prototype implementation against a set of 475 PC benchmarks. We find that our test correctly decides the closeness of all 475 PCs within 3600 seconds.

Citations (8)

Summary

We haven't generated a summary for this paper yet.