Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 79 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

On the Expressive Power of Tree-Structured Probabilistic Circuits (2410.05465v2)

Published 7 Oct 2024 in cs.AI and cs.LG

Abstract: Probabilistic circuits (PCs) have emerged as a powerful framework to compactly represent probability distributions for efficient and exact probabilistic inference. It has been shown that PCs with a general directed acyclic graph (DAG) structure can be understood as a mixture of exponentially (in its height) many components, each of which is a product distribution over univariate marginals. However, existing structure learning algorithms for PCs often generate tree-structured circuits or use tree-structured circuits as intermediate steps to compress them into DAG-structured circuits. This leads to the intriguing question of whether there exists an exponential gap between DAGs and trees for the PC structure. In this paper, we provide a negative answer to this conjecture by proving that, for $n$ variables, there exists a quasi-polynomial upper bound $n{O(\log n)}$ on the size of an equivalent tree computing the same probability distribution. On the other hand, we also show that given a depth restriction on the tree, there is a super-polynomial separation between tree and DAG-structured PCs. Our work takes an important step towards understanding the expressive power of tree-structured PCs, and our techniques may be of independent interest in the study of structure learning algorithms for PCs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)