On the Expressive Power of Tree-Structured Probabilistic Circuits (2410.05465v2)
Abstract: Probabilistic circuits (PCs) have emerged as a powerful framework to compactly represent probability distributions for efficient and exact probabilistic inference. It has been shown that PCs with a general directed acyclic graph (DAG) structure can be understood as a mixture of exponentially (in its height) many components, each of which is a product distribution over univariate marginals. However, existing structure learning algorithms for PCs often generate tree-structured circuits or use tree-structured circuits as intermediate steps to compress them into DAG-structured circuits. This leads to the intriguing question of whether there exists an exponential gap between DAGs and trees for the PC structure. In this paper, we provide a negative answer to this conjecture by proving that, for $n$ variables, there exists a quasi-polynomial upper bound $n{O(\log n)}$ on the size of an equivalent tree computing the same probability distribution. On the other hand, we also show that given a depth restriction on the tree, there is a super-polynomial separation between tree and DAG-structured PCs. Our work takes an important step towards understanding the expressive power of tree-structured PCs, and our techniques may be of independent interest in the study of structure learning algorithms for PCs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.