Papers
Topics
Authors
Recent
2000 character limit reached

Super graphs on groups, II (2401.09912v1)

Published 18 Jan 2024 in math.GR

Abstract: In an earlier paper, the authors considered three types of graphs, and three equivalence relations, defined on a group, viz.\ the power graph, enhanced power graph, and commuting graph, and the relations of equality, conjugacy, and same order; for each choice of a graph type A and an equivalence relation B, there is a graph, the \emph{B superA graph} defined on $G$. The resulting nine graphs (of which eight were shown to be in general distinct) form a two-dimensional hierarchy. In the present paper, we consider these graphs further. We prove universality properties for the conjugacy supergraphs of various types, adding the nilpotent, solvable and enhanced power graphs to the commuting graphs considered in the rest of the paper, and also examine their relation to the invariable generating graph of the group. We also show that supergraphs can be expressed as graph compositions, in the sense of Schwenk, and use this representation to calculate their Wiener index. We illustrate these by computing Wiener index of equality supercommuting and conjugacy supercommuting graphs for dihedral and quaternion groups.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.