Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the representations of $\text{SO}(1,d+1)$ (2111.04591v2)

Published 8 Nov 2021 in hep-th

Abstract: $\text{SO}(1, d+1)$ is the isometry group of $(d+1)$-dimensional de Sitter spacetime $\text{dS}{d+1}$ and the conformal group of $\mathbb{R}{d}$. This note gives a pedagogical introduction to the representation theory of $\text{SO}(1, d+1)$, from the perspective of de Sitter quantum field theory and using tools from conformal field theory. Topics include (1) the construction and classification of all unitary irreducible representations (UIRs) of $\text{SO}(1,2)$ and $\text{SL}(2,\mathbb R)$, (2) the construction and classification of all UIRs of $\text{SO}(1,d+1)$ that describe integer-spin fields in $\text{dS}{d+1}$, (3) a physical framework for understanding these UIRs, (4) the definition and derivation of Harish-Chandra group characters of $\text{SO}(1,d+1)$, and (5) a comparison between UIRs of $\text{SO}(1, d+1)$ and $\text{SO}(2,d)$.

Citations (33)

Summary

We haven't generated a summary for this paper yet.