Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spinning fields on S$^d$ and dS$_d$, UIRs and Ladder operators (2410.10964v2)

Published 14 Oct 2024 in hep-th

Abstract: We construct, for spin $0,1,2$ tensor fields on S$d$, a set of ladder operators that connect the distinct UIRs of SO$(d+1)$. This is achieved by relying on the conformal Killing vectors of S$d$. For the case of spinning fields, the ladder operators generalize previous expressions with a compensating transformation necessary to preserve the transversality condition. We then extend the results to the Exceptional/Discrete UIRs of SO$(d,1)$, again relying on the conformal Killing vectors of de Sitter space. Our construction recovers the conventional conformal primary transformations for the scalar fields when the mass term leads to conformal coupling. A similar approach for the spin-2 field leads to the conformal-like operators found recently.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. P. A. M. Dirac, Annals Math. 36 (1935) 657.
  2. S. Deser and R. I. Nepomechie, Annals Phys. 154 (1984) 396.
  3. S. Deser and A. Waldron, Nucl. Phys. B 607 (2001) 577.
  4. T. Anous and J. Skulte, SciPost Phys. 9 (2020) 028
  5. V. A. Letsios, JHEP 2024 (2024) 147.
  6. W. Mück, Phys. Rev. D 97 (2018) 025011.
  7. T. Ortin, “Gravity and Strings,” Cambridge University Press, 2015.
  8. A. Higuchi, J. Math. Phys. 28 (1987) 1553; Erratum: J. Math. Phys. 43 (2002) 6385.
  9. H. Epstein and U. Moschella, Commun. Math. Phys. 336 (2015) 381.
  10. D. Anninos, Int. J. Mod. Phys. A 27 (2012) 1230013.
  11. A. Folacci, Phys. Rev. D 46 (1992) 2553.
  12. Y. T. A. Law, JHEP 12 (2021) 213
  13. B. Allen, Phys. Rev. D 32 (1985) 3136.
  14. B. Allen and A. Folacci, Phys. Rev. D 35 (1987) 3771
  15. K. Kirsten and J. Garriga, Phys. Rev. D 48 (1993) 567.
  16. R. Jackiw, Rev. Mod. Phys. 52 (1980) 661.
  17. M. Walker and R. Penrose, Commun. Math. Phys. 18 (1970) 265.
  18. M. Cariglia, Rev. Mod. Phys. 86 (2014) 1283.
  19. A. Higuchi, Nucl. Phys. B 282 (1987) 397.
  20. S. Deser and A. Waldron, Phys. Rev. Lett. 87 (2001) 031601.
  21. S. Deser and A. Waldron, Nuclear Physics 607 (2001) 577; Physics Letters B603 (2004) 30 .
  22. S. Deser and A. Waldron, Physics Letters B508 (2001) 347; Physics Letters B513 (2001) 137.
  23. B. Allen, Phys. Rev. D 34 (1986) 3670.
  24. V. A. Letsios, JHEP 05 (2024) 078.
  25. N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincare A Phys. Theor. 9 (1968) 109.
  26. E. A. Tagirov, Annals Phys. 76 (1973) 561.
  27. E. T. Akhmedov, Int. J. Mod. Phys. D 23 (2014) 1430001.
  28. A. Higuchi, Class. Quant. Grav. 8 (1991) 2005.
  29. Digital library of mathematical functions, https://dlmf.nist.gov/14.3.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com