Papers
Topics
Authors
Recent
2000 character limit reached

A text autoencoder from transformer for fast encoding language representation (2111.02844v1)

Published 4 Nov 2021 in cs.CL and cs.AI

Abstract: In recent years BERT shows apparent advantages and great potential in natural language processing tasks. However, both training and applying BERT requires intensive time and resources for computing contextual language representations, which hinders its universality and applicability. To overcome this bottleneck, we propose a deep bidirectional LLM by using window masking mechanism at attention layer. This work computes contextual language representations without random masking as does in BERT and maintains the deep bidirectional architecture like BERT. To compute the same sentence representation, our method shows O(n) complexity less compared to other transformer-based models with O($n2$). To further demonstrate its superiority, computing context language representations on CPU environments is conducted, by using the embeddings from the proposed method, logistic regression shows much higher accuracy in terms of SMS classification. Moverover, the proposed method also achieves significant higher performance in semantic similarity tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.