Poisson PCA for matrix count data (2110.14420v1)
Abstract: We develop a dimension reduction framework for data consisting of matrices of counts. Our model is based on assuming the existence of a small amount of independent normal latent variables that drive the dependency structure of the observed data, and can be seen as the exact discrete analogue for a contaminated low-rank matrix normal model. We derive estimators for the model parameters and establish their root-$n$ consistency. An extension of a recent proposal from the literature is used to estimate the latent dimension of the model. Additionally, a sparsity-accommodating variant of the model is considered. The method is shown to surpass both its vectorization-based competitors and matrix methods assuming the continuity of the data distribution in analysing simulated data and real abundance data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.