Papers
Topics
Authors
Recent
2000 character limit reached

CTC Variations Through New WFST Topologies

Published 6 Oct 2021 in eess.AS, cs.CL, and cs.LG | (2110.03098v3)

Abstract: This paper presents novel Weighted Finite-State Transducer (WFST) topologies to implement Connectionist Temporal Classification (CTC)-like algorithms for automatic speech recognition. Three new CTC variants are proposed: (1) the "compact-CTC", in which direct transitions between units are replaced with <epsilon> back-off transitions; (2) the "minimal-CTC", that only adds <blank> self-loops when used in WFST-composition; and (3) the "selfless-CTC" variants, which disallows self-loop for non-blank units. Compact-CTC allows for 1.5 times smaller WFST decoding graphs and reduces memory consumption by two times when training CTC models with the LF-MMI objective without hurting the recognition accuracy. Minimal-CTC reduces graph size and memory consumption by two and four times for the cost of a small accuracy drop. Using selfless-CTC can improve the accuracy for wide context window models.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.