Semi-Supervised Speech Recognition via Graph-based Temporal Classification (2010.15653v2)
Abstract: Semi-supervised learning has demonstrated promising results in automatic speech recognition (ASR) by self-training using a seed ASR model with pseudo-labels generated for unlabeled data. The effectiveness of this approach largely relies on the pseudo-label accuracy, for which typically only the 1-best ASR hypothesis is used. However, alternative ASR hypotheses of an N-best list can provide more accurate labels for an unlabeled speech utterance and also reflect uncertainties of the seed ASR model. In this paper, we propose a generalized form of the connectionist temporal classification (CTC) objective that accepts a graph representation of the training labels. The newly proposed graph-based temporal classification (GTC) objective is applied for self-training with WFST-based supervision, which is generated from an N-best list of pseudo-labels. In this setup, GTC is used to learn not only a temporal alignment, similarly to CTC, but also a label alignment to obtain the optimal pseudo-label sequence from the weighted graph. Results show that this approach can effectively exploit an N-best list of pseudo-labels with associated scores, considerably outperforming standard pseudo-labeling, with ASR results approaching an oracle experiment in which the best hypotheses of the N-best lists are selected manually.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.