Papers
Topics
Authors
Recent
2000 character limit reached

GoG: Relation-aware Graph-over-Graph Network for Visual Dialog

Published 17 Sep 2021 in cs.CL and cs.CV | (2109.08475v3)

Abstract: Visual dialog, which aims to hold a meaningful conversation with humans about a given image, is a challenging task that requires models to reason the complex dependencies among visual content, dialog history, and current questions. Graph neural networks are recently applied to model the implicit relations between objects in an image or dialog. However, they neglect the importance of 1) coreference relations among dialog history and dependency relations between words for the question representation; and 2) the representation of the image based on the fully represented question. Therefore, we propose a novel relation-aware graph-over-graph network (GoG) for visual dialog. Specifically, GoG consists of three sequential graphs: 1) H-Graph, which aims to capture coreference relations among dialog history; 2) History-aware Q-Graph, which aims to fully understand the question through capturing dependency relations between words based on coreference resolution on the dialog history; and 3) Question-aware I-Graph, which aims to capture the relations between objects in an image based on fully question representation. As an additional feature representation module, we add GoG to the existing visual dialogue model. Experimental results show that our model outperforms the strong baseline in both generative and discriminative settings by a significant margin.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.