Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Context-Aware Graph Inference for Visual Dialog (2004.02194v1)

Published 5 Apr 2020 in cs.CV

Abstract: Visual dialog is a challenging task that requires the comprehension of the semantic dependencies among implicit visual and textual contexts. This task can refer to the relation inference in a graphical model with sparse contexts and unknown graph structure (relation descriptor), and how to model the underlying context-aware relation inference is critical. To this end, we propose a novel Context-Aware Graph (CAG) neural network. Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations. The graph structure (relations in dialog) is iteratively updated using an adaptive top-$K$ message passing mechanism. Specifically, in every message passing step, each node selects the most $K$ relevant nodes, and only receives messages from them. Then, after the update, we impose graph attention on all the nodes to get the final graph embedding and infer the answer. In CAG, each node has dynamic relations in the graph (different related $K$ neighbor nodes), and only the most relevant nodes are attributive to the context-aware relational graph inference. Experimental results on VisDial v0.9 and v1.0 datasets show that CAG outperforms comparative methods. Visualization results further validate the interpretability of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Dan Guo (66 papers)
  2. Hui Wang (371 papers)
  3. Hanwang Zhang (161 papers)
  4. Zheng-Jun Zha (144 papers)
  5. Meng Wang (1063 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.