Papers
Topics
Authors
Recent
2000 character limit reached

Dichotomy results for eventually always hitting time statistics and almost sure growth of extremes

Published 13 Sep 2021 in math.DS | (2109.06314v1)

Abstract: Suppose $(f,\mathcal{X},\mu)$ is a measure preserving dynamical system and $\phi \colon \mathcal{X} \to \mathbb{R}$ a measurable function. Consider the maximum process $M_n:=\max{X_1 \ldots,X_n}$, where $X_i=\phi\circ f{i-1}$ is a time series of observations on the system. Suppose that $(u_n)$ is a non-decreasing sequence of real numbers, such that $\mu(X_1>u_n)\to 0$. For certain dynamical systems, we obtain a zero--one measure dichotomy for $\mu(M_n\leq u_n\,\textrm{i.o.})$ depending on the sequence $u_n$. Specific examples are piecewise expanding interval maps including the Gauss map. For the broader class of non-uniformly hyperbolic dynamical systems, we make significant improvements on existing literature for characterising the sequences $u_n$. Our results on the permitted sequences $u_n$ are commensurate with the optimal sequences (and series criteria) obtained by Klass (1985) for i.i.d. processes. Moreover, we also develop new series criteria on the permitted sequences in the case where the i.i.d. theory breaks down. Our analysis has strong connections to specific problems in eventual always hitting time statistics and extreme value theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.