Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long hitting times for expanding systems (1812.09231v3)

Published 20 Dec 2018 in math.DS

Abstract: We prove a new result in the area of hitting time statistics. Currently, there is a lot of papers showing that the first entry times into cylinders or balls are often faster than the Birkhoff's Ergodic Theorem would suggest. We provide an opposite counterpart to these results by proving that the hitting times into shrinking balls are also often much larger than these theorems would suggest, by showing that for many dynamical systems $$ \displaystyle \limsup_{r\to 0} \tau_{B(y,r)}(x)\mu(B(y,r))=+\infty, $$ for an appropriately large, at least of full measure, set of points $y$ and $x$. We first do this for all transitive open distance expanding maps and Gibbs/equilibrium states of H\"older continuous potentials; in particular for all irreducible subshifts of finite type with a finite alphabet. Then we prove such result for all finitely irreducible subshifts of finite type with a countable alphabet and Gibbs/equilibrium states for H\"older continuous summable potentials. Next, we show that the \emph{limsup} result holds for all graph directed Markov systems (far going natural generalizations of iterated function systems) and projections of aforementioned Gibbs states on their limit sets. By utilizing the first return map techniques, we then prove the \emph{limsup} result for all tame topological Collect--Eckmann multimodal maps of an interval, all tame topological Collect--Eckmann rational functions of the Riemann sphere, and all dynamically semi--regular transcendental meromorphic functions from $\mathbb{C}$ to $\widehat{\mathbb{C}}$.

Summary

We haven't generated a summary for this paper yet.