Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Extremal dichotomy for uniformly hyperbolic systems (1501.05023v2)

Published 20 Jan 2015 in math.DS and math.PR

Abstract: We consider the extreme value theory of a hyperbolic toral automorphism $T: \mathbb{T}2 \to \mathbb{T}2$ showing that if a H\"older observation $\phi$ which is a function of a Euclidean-type distance to a non-periodic point $\zeta$ is strictly maximized at $\zeta$ then the corresponding time series ${\phi\circ Ti}$ exhibits extreme value statistics corresponding to an iid sequence of random variables with the same distribution function as $\phi$ and with extremal index one. If however $\phi$ is strictly maximized at a periodic point $q$ then the corresponding time-series exhibits extreme value statistics corresponding to an iid sequence of random variables with the same distribution function as $\phi$ but with extremal index not equal to one. We give a formula for the extremal index (which depends upon the metric used and the period of $q$). These results imply that return times are Poisson to small balls centered at non-periodic points and compound Poisson for small balls centered at periodic points.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.