Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative recurrence statistics and convergence to an extreme value distribution for non-uniformly hyperbolic dynamical systems (1404.3941v2)

Published 15 Apr 2014 in math.DS

Abstract: For non-uniformly hyperbolic dynamical systems we consider the time series of maxima along typical orbits. Using ideas based upon quantitative recurrence time statistics we prove convergence of the maxima (under suitable normalization) to an extreme value distribution, and obtain estimates on the rate of convergence. We show that our results are applicable to a range of examples, and include new results for Lorenz maps, certain partially hyperbolic systems, and non-uniformly expanding systems with sub-exponential decay of correlations. For applications where analytic results are not readily available we show how to estimate the rate of convergence to an extreme value distribution based upon numerical information of the quantitative recurrence statistics. We envisage that such information will lead to more efficient statistical parameter estimation schemes based upon the block-maxima method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.