Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilizing Shannon's Entropy to Create Privacy Aware Architectures (2109.04649v2)

Published 10 Sep 2021 in cs.CR, cs.DB, cs.IT, and math.IT

Abstract: Privacy is an individual choice to determine which personal details can be collected, used and shared. Individual consent and transparency are the core tenets for earning customers trust and this motivates the organizations to adopt privacy enhancing practices while creating the systems. The goal of a privacy-aware design is to protect information in a way that does not increase an adversary's existing knowledge about an individual beyond what is permissible. This becomes critical when these data elements can be linked with the wealth of auxiliary information available outside the system to identify an individual. Privacy regulations around the world provide directives to protect individual privacy but are generally complex and vague, making their translation into actionable and technical privacy-friendly architectures challenging. In this paper, we utilize Shannon's Entropy to create an objective metric that can help simplify the state-of-the-art Privacy Design Strategies proposed in the literature and aid our key technical design decisions to create privacy aware architectures.

Summary

We haven't generated a summary for this paper yet.