Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Synthesising Privacy by Design Knowledge Towards Explainable Internet of Things Application Designing in Healthcare (2011.03747v1)

Published 7 Nov 2020 in cs.SE

Abstract: Privacy by Design (PbD) is the most common approach followed by software developers who aim to reduce risks within their application designs, yet it remains commonplace for developers to retain little conceptual understanding of what is meant by privacy. A vision is to develop an intelligent privacy assistant to whom developers can easily ask questions in order to learn how to incorporate different privacy-preserving ideas into their IoT application designs. This paper lays the foundations toward developing such a privacy assistant by synthesising existing PbD knowledge so as to elicit requirements. It is believed that such a privacy assistant should not just prescribe a list of privacy-preserving ideas that developers should incorporate into their design. Instead, it should explain how each prescribed idea helps to protect privacy in a given application design context-this approach is defined as 'Explainable Privacy'. A total of 74 privacy patterns were analysed and reviewed using ten different PbD schemes to understand how each privacy pattern is built and how each helps to ensure privacy. Due to page limitations, we have presented a detailed analysis in [3]. In addition, different real-world Internet of Things (IoT) use-cases, including a healthcare application, were used to demonstrate how each privacy pattern could be applied to a given application design. By doing so, several knowledge engineering requirements were identified that need to be considered when developing a privacy assistant. It was also found that, when compared to other IoT application domains, privacy patterns can significantly benefit healthcare applications. In conclusion, this paper identifies the research challenges that must be addressed if one wishes to construct an intelligent privacy assistant that can truly augment software developers' capabilities at the design phase.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.