Papers
Topics
Authors
Recent
2000 character limit reached

Measurement induced quantum walks (2108.13047v1)

Published 30 Aug 2021 in cond-mat.stat-mech and quant-ph

Abstract: We investigate a tight binding quantum walk on a graph. Repeated stroboscopic measurements of the position of the particle yield a measured "trajectory", and a combination of classical and quantum mechanical properties for the walk are observed. We explore the effects of the measurements on the spreading of the packet on a one dimensional line, showing that except for the Zeno limit, the system converges to Gaussian statistics similarly to a classical random walk. A large deviation analysis and an Edgeworth expansion yield quantum corrections to this normal behavior. We then explore the first passage time to a target state using a generating function method, yielding properties like the quantization of the mean first return time. In particular, we study the effects of certain sampling rates which cause remarkable change in the behavior in the system, like divergence of the mean detection time in finite systems and a decomposition of the phase space into mutually exclusive regions, an effect that mimics ergodicity breaking, whose origin here is the destructive interference in quantum mechanics. For a quantum walk on a line we show that in our system the first detection probability decays classically like $(\text{time}){-3/2}$, this is dramatically different compared to local measurements which yield a decay rate of $(\text{time}){-3}$, indicating that the exponents of the first passage time depends on the type of measurements used.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.