First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States (2402.15843v2)
Abstract: We investigate a quantum walk on a ring represented by a directed triangle graph with complex edge weights and monitored at a constant rate until the quantum walker is detected. To this end, the first hitting time statistics is recorded using unitary dynamics interspersed stroboscopically by measurements, which is implemented on IBM quantum computers with a midcircuit readout option. Unlike classical hitting times, the statistical aspect of the problem depends on the way we construct the measured path, an effect that we quantify experimentally. First, we experimentally verify the theoretical prediction that the mean return time to a target state is quantized, with abrupt discontinuities found for specific sampling times and other control parameters, which has a well-known topological interpretation. Second, depending on the initial state, system parameters, and measurement protocol, the detection probability can be less than one or even zero, which is related to dark-state physics. Both, return-time quantization and the appearance of the dark states are related to degeneracies in the eigenvalues of the unitary time evolution operator. We conclude that, for the IBM quantum computer under study, the first hitting times of monitored quantum walks are resilient to noise. Yet, a finite number of measurements leads to broadening effects, which modify the topological quantization and chiral effects of the asymptotic theory with an infinite number of measurements. Our results point the way for the development of novel quantum walk algorithms that exploit measurement-induced effects on quantum computers.
- H. Krovi and T. A. Brun, Hitting time for quantum walks on the hypercube, Phys. Rev. A 73, 032341 (2006a).
- H. Krovi and T. A. Brun, Quantum walks with infinite hitting times, Phys. Rev. A 74, 042334 (2006b).
- M. Varbanov, H. Krovi, and T. A. Brun, Hitting time for the continuous quantum walk, Phys. Rev. A 78, 022324 (2008).
- S. Dhar, S. Dasgupta, and A. Dhar, Quantum time of arrival distribution in a simple lattice model, Journal of Physics A: Mathematical and Theoretical 48, 115304 (2015b).
- H. Friedman, D. A. Kessler, and E. Barkai, Quantum walks: The first detected passage time problem, Phys. Rev. E 95, 032141 (2017).
- F. Thiel, E. Barkai, and D. A. Kessler, First detected arrival of a quantum walker on an infinite line, Phys. Rev. Lett. 120, 040502 (2018).
- R. Modak and S. Aravinda, Non-hermitian description of sharp quantum resetting (2023), arXiv:2303.03790 [quant-ph] .
- M. Kulkarni and S. N. Majumdar, First detection probability in quantum resetting via random projective measurements (2023), arXiv:2305.15123 [quant-ph] .
- X. Meng and L. Chen, The first detection time of one-dimensional systems with long-range interactions, International Journal of Modern Physics B 0, 2450190 (0), https://doi.org/10.1142/S021797922450190X .
- D. A. Kessler, E. Barkai, and K. Ziegler, First-detection time of a quantum state under random probing, Phys. Rev. A 103, 022222 (2021).
- E. Wanzambi and S. Andersson, Quantum computing: Implementing hitting time for coined quantum walks on regular graphs (2021), arXiv:2108.02723 [quant-ph] .
- L. Laneve, F. Tacchino, and I. Tavernelli, On Hitting Times for General Quantum Markov Processes, Quantum 7, 1056 (2023).
- S. Redner, A Guide to First-Passage Processes (Cambridge University Press, 2001).
- S. Redner, A first look at first-passage processes, Physica A: Statistical Mechanics and its Applications , 128545 (2023).
- R. Metzler, G. Oshanin, and S. Redner, First-Passage Phenomena and Their Applications (WORLD SCIENTIFIC, 2014) https://www.worldscientific.com/doi/pdf/10.1142/9104 .
- G. Pólya, Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt im straßennetz, Mathematische Annalen 84, 149 (1921).
- Q. Liu, D. A. Kessler, and E. Barkai, Designing exceptional-point-based graphs yielding topologically guaranteed quantum search, Phys. Rev. Res. 5, 023141 (2023).
- R. Yin and E. Barkai, Restart expedites quantum walk hitting times, Phys. Rev. Lett. 130, 050802 (2023).
- M. Štefaňák, I. Jex, and T. Kiss, Recurrence and pólya number of quantum walks, Phys. Rev. Lett. 100, 020501 (2008).
- M. Kac, On distributions of certain wiener functionals, Transactions of the American Mathematical Society 65, 1 (1949).
- A. Didi and E. Barkai, Measurement-induced quantum walks, Phys. Rev. E 105, 054108 (2022).
- B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quantum theory, Journal of Mathematical Physics 18, 756 (1977).
- C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, A Wiley - Interscience publication No. v. 1 (Wiley, 1977).
- G. Vidal and C. M. Dawson, Universal quantum circuit for two-qubit transformations with three controlled-not gates, Phys. Rev. A 69, 010301 (2004).
- S. Tornow and K. Ziegler, Measurement-induced quantum walks on an ibm quantum computer, Phys. Rev. Res. 5, 033089 (2023).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.