Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Routing in Small Satellite Networks: A GNN-based Learning Approach (2108.08523v1)

Published 19 Aug 2021 in cs.NI

Abstract: Small satellite networks (SSNs), which are constructed by large number of small satellites in low earth orbits (LEO), are considered as promising ways to provide ubiquitous Internet access. To handle stochastic Internet traffic, on-board routing is necessary in SSNs. However, large-scale, high dynamic SSN topologies and limited resources make on-board routing in SSNs face great challenges. To address this issue, we turn to graph neural network (GNN), a deep learning network inherently designed for graph data, motivated by the fact that SSNs can be naturally modeled as graphs. By exploiting GNN's topology extraction capabilities, we propose a GNN-based learning routing approach (GLR) to achieve near-optimal on-board routing with low complexity. We design high-order and low-order feature extractor and cross process to deal with high dynamic topologies of SSNs, even those topologies that have never been seen in training. Simulation results demonstrate that GLR results in a significant reduction in routing computation cost while achieves near-optimal routing performance in SSNs with different scales compared with typical existing satellite routing algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.