Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Protocol Location Forwarding (MPLF) for Space Routing (2401.07517v1)

Published 15 Jan 2024 in cs.NI

Abstract: The structure and routing architecture design is critical for achieving low latency and high capacity in future LEO space networks (SNs). Existing studies mainly focus on topologies of space networks, but there is a lack of analysis on constellation structures, which can greatly affect network performance. In addition, some routing architectures are designed for networks with a small number of network nodes such as Iridium while they introduce significant network overhead for high-density networks (i.e., mega-constellation networks containing thousands of satellites). In this paper, we conduct the quantitatively study on the design of network structure and routing architecture in space. The high density, high dynamics, and large scale nature of emerging Space Networks (SNs) pose significant challenges, such as unstable routing paths, low network reachability, high latency, and large jitter. To alleviate the above challenges, we design the structure of space network to maximum the connectivity through wisely adjusting the inter-plane inter satellite link. We further propose Multi-Protocol Location Forwarding (MPLF), a distributed routing architecture, targeting at minimizing the propagation latency with a distributed, convergence-free routing paradigm, while keeping routing stable and maximum the path diversity. Comprehensive experiments are conducted on a customized platform \textit{Space Networking Kits} (SNK) which demonstrate that our solution can outperform existing related schemes by about 14\% reduction of propagation latency and 66\% reduction of hops-count on average, while sustaining a high path diversity with only $O(1)$ time complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. Space Exploration Holdings, “Spacex ka-band ngso constellation fcc filing sat-loa-20161115-00118,” http://licensing.fcc.gov.
  2. ——, “Spacex ka-band ngso constellation fcc filing sat-loa-20200526-00055-2378671,” http://licensing.fcc.gov.
  3. T. Clausen and P. Jacquet, “Rfc3626: Optimized link state routing protocol (olsr),” 2003.
  4. C. Perkins, E. Belding-Royer, and S. Das, “Rfc3561: Ad hoc on-demand distance vector (aodv) routing,” 2003.
  5. S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla, “Exploring the” internet from space” with hypatia,” in Proceedings of the ACM Internet Measurement Conference, 2020, pp. 214–229.
  6. I. C. Inc, “Iridium next,” https://www.iridiumnext.com/, 2020.
  7. H. S. Chang, B. W. Kim, C. G. Lee, Y. Choi, S. L. Min, H. S. Yang, and C. S. Kim, “Topological design and routing for low-earth orbit satellite networks,” in Proceedings of GLOBECOM’95, vol. 1.   IEEE, 1995, pp. 529–535.
  8. H. S. Chang, B. W. Kim, C. G. Lee, S. L. Min, Y. Choi, H. S. Yang, D. N. Kim, and C. S. Kim, “Fsa-based link assignment and routing in low-earth orbit satellite networks,” IEEE transactions on vehicular technology, vol. 47, no. 3, pp. 1037–1048, 1998.
  9. D. Bhattacherjee and A. Singla, “Network topology design at 27,000 km/hour,” in Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies, 2019, pp. 341–354.
  10. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM computer communication review, vol. 38, no. 4, pp. 63–74, 2008.
  11. A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers randomly,” in 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), 2012, pp. 225–238.
  12. Z. Yan, G. Gu, K. Zhao, Q. Wang, G. Li, X. Nie, H. Yang, and S. Du, “Integer linear programming based topology design for gnsss with inter-satellite links,” IEEE Wireless Communications Letters, vol. 10, no. 2, pp. 286–290, 2020.
  13. D. Bhattacherjee, “Towards performant networking from low-earth orbit,” Ph.D. dissertation, ETH Zurich, 2021.
  14. T. R. Henderson and R. H. Katz, “On distributed, geographic-based packet routing for leo satellite networks,” in Globecom’00-IEEE. Global Telecommunications Conference. Conference Record (Cat. No. 00CH37137), vol. 2.   IEEE, 2000, pp. 1119–1123.
  15. H. Tsunoda, K. Ohta, N. Kato, and Y. Nemoto, “Geographical and orbital information based mobility management to overcome last-hop ambiguity over ip/leo satellite networks,” in 2006 IEEE International Conference on Communications, vol. 4.   IEEE, 2006, pp. 1849–1854.
  16. M. Besta, J. Domke, M. Schneider, M. Konieczny, S. Di Girolamo, T. Schneider, A. Singla, and T. Hoefler, “High-performance routing with multipathing and path diversity in ethernet and hpc networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 4, pp. 943–959, 2020.
  17. R. Mauger and C. Rosenberg, “Qos guarantees for multimedia services on a tdma-based satellite network,” IEEE Communications Magazine, vol. 35, no. 7, pp. 56–65, 1997.
  18. M. Werner, “A dynamic routing concept for atm-based satellite personal communication networks,” IEEE journal on selected areas in communications, vol. 15, no. 8, pp. 1636–1648, 1997.
  19. A. Donner, M. Berioli, and M. Werner, “Mpls-based satellite constellation networks,” IEEE Journal on Selected areas in Communications, vol. 22, no. 3, pp. 438–448, 2004.
  20. M. C. Inc, “Celestri,” http://www.celestri.com/, 1998.
  21. E. Ekici, I. F. Akyildiz, and M. D. Bender, “Datagram routing algorithm for leo satellite networks,” in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), vol. 2.   IEEE, 2000, pp. 500–508.
  22. ——, “A distributed routing algorithm for datagram traffic in leo satellite networks,” IEEE/ACM Transactions on networking, vol. 9, no. 2, pp. 137–147, 2001.
  23. M. Jia, S. Zhu, L. Wang, Q. Guo, H. Wang, and Z. Liu, “Routing algorithm with virtual topology toward to huge numbers of leo mobile satellite network based on sdn,” Mobile Networks and Applications, vol. 23, no. 2, pp. 285–300, 2018.
  24. T. Zhang, J. Li, H. Li, S. Zhang, P. Wang, and H. Shen, “Application of time-varying graph theory over the space information networks,” IEEE Network, vol. 34, no. 2, pp. 179–185, 2020.
  25. Q. Chen, J. Guo, L. Yang, X. Liu, and X. Chen, “Topology virtualization and dynamics shielding method for leo satellite networks,” IEEE Communications Letters, vol. 24, no. 2, pp. 433–437, 2019.
  26. Ö. Korçak and F. Alagöz, “Virtual topology dynamics and handover mechanisms in earth-fixed leo satellite systems,” Computer networks, vol. 53, no. 9, pp. 1497–1511, 2009.
  27. F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geographical routing in wireless ad-hoc networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 621–653, 2012.
  28. M. Mauve, J. Widmer, and H. Hartenstein, “A survey on position-based routing in mobile ad hoc networks,” IEEE network, vol. 15, no. 6, pp. 30–39, 2001.
  29. J. C. Navas and T. Imielinski, “Geocast—geographic addressing and routing,” in Proceedings of the 3rd annual ACM/IEEE international conference on Mobile computing and networking, 1997, pp. 66–76.
  30. H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed packet radio terminals,” IEEE Transactions on communications, vol. 32, no. 3, pp. 246–257, 1984.
  31. T.-C. Hou and V. Li, “Transmission range control in multihop packet radio networks,” IEEE Transactions on Communications, vol. 34, no. 1, pp. 38–44, 1986.
  32. E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric networks,” in in Proc. 11 th Canadian Conference on Computational Geometry.   Citeseer, 1999.
  33. R. Nelson and L. Kleinrock, “The spatial capacity of a slotted aloha multihop packet radio network with capture,” IEEE Transactions on Communications, vol. 32, no. 6, pp. 684–694, 1984.
  34. F. Kuhn, R. Wattenhofer, and A. Zollinger, “An algorithmic approach to geographic routing in ad hoc and sensor networks,” IEEE/ACM Transactions On Networking, vol. 16, no. 1, pp. 51–62, 2008.
  35. B. Karp and H. T. Kung, “Gpsr: Greedy perimeter stateless routing for wireless networks,” in Proceedings of the 6th annual international conference on Mobile computing and networking, 2000, pp. 243–254.
  36. H. Tsunoda, K. Ohta, N. Kato, and Y. Nemoto, “Supporting ip/leo satellite networks by handover-independent ip mobility management,” IEEE Journal on selected areas in communications, vol. 22, no. 2, pp. 300–307, 2004.
  37. M. Handley, “Delay is not an option: Low latency routing in space,” in Proceedings of the 17th ACM Workshop on Hot Topics in Networks, 2018, pp. 85–91.
  38. Z. Lai, H. Li, and J. Li, “Starperf: Characterizing network performance for emerging mega-constellations,” in 2020 IEEE 28th International Conference on Network Protocols (ICNP).   IEEE, 2020, pp. 1–11.
  39. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards an open, distributed sdn os,” in Proceedings of the third workshop on Hot topics in software defined networking, 2014, pp. 1–6.
  40. J. G. Walker, “Satellite constellations,” Journal of the British Interplanetary Society, vol. 37, p. 559, 1984.
  41. J. Bao, B. Zhao, W. Yu, Z. Feng, C. Wu, and Z. Gong, “Opensan: a software-defined satellite network architecture,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 347–348, 2014.
  42. Y. Zhang, Q. Wu, Z. Lai, and H. Li, “Enabling low-latency-capable satellite-ground topology for emerging leo satellite networks,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communications.   IEEE, 2022, pp. 1329–1338.
  43. E. Rosen, A. Viswanathan, and R. Callon, “Rfc3031: Multiprotocol label switching architecture,” 2001.
  44. T. Ors and C. Rosenberg, “Providing ip qos over geo satellite systems using mpls,” International journal of satellite communications, vol. 19, no. 5, pp. 443–461, 2001.
  45. T. G. Reid, A. M. Neish, T. Walter, and P. K. Enge, “Broadband leo constellations for navigation,” Navigation: Journal of The Institute of Navigation, vol. 65, no. 2, pp. 205–220, 2018.
  46. D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “Rsvp-te: extensions to rsvp for lsp tunnels,” Tech. Rep., 2001.
  47. B. Jamoussi, L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan, T. Worster, N. Feldman, A. Fredette, M. Girish et al., “Constraint-based lsp setup using ldp,” Tech. Rep., 2002.
  48. J. Zhu, “Conversion of earth-centered earth-fixed coordinates to geodetic coordinates,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 3, pp. 957–961, 1994.
  49. M. Roth, H. Brandt, and H. Bischl, “Implementation of a geographical routing scheme for low earth orbiting satellite constellations using intersatellite links,” International Journal of Satellite Communications and Networking, vol. 39, no. 1, pp. 92–107, 2021.
  50. C. Hopps, “Analysis of an equal-cost multi-path algorithm,” Tech. Rep., 2000.
  51. W. Xiangtong, “Space networking kit,” https://github.com/xdr940/snk, 2022.

Summary

We haven't generated a summary for this paper yet.