Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Implicit Regularization and Entrywise Convergence of Riemannian Optimization for Low Tucker-Rank Tensor Completion (2108.07899v5)

Published 17 Aug 2021 in math.OC

Abstract: This paper is concerned with the low Tucker-rank tensor completion problem, which is about reconstructing a tensor $ T \in\mathbb{R}{n\times n \times n}$ of low multilinear rank from partially observed entries. Riemannian optimization algorithms are a class of efficient methods for this problem, but the theoretical convergence analysis is still lacking. In this manuscript, we establish the entrywise convergence of the vanilla Riemannian gradient method for low Tucker-rank tensor completion under the nearly optimal sampling complexity $O(n{3/2})$. Meanwhile, the implicit regularization phenomenon of the algorithm has also been revealed. As far as we know, this is the first work that has shown the entrywise convergence and implicit regularization property of a non-convex method for low Tucker-rank tensor completion. The analysis relies on the leave-one-out technique, and some of the technical results developed in the paper might be of broader interest in investigating the properties of other non-convex methods for this problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube