Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank optimization on Tucker tensor varieties (2311.18324v2)

Published 30 Nov 2023 in math.OC, cs.NA, and math.NA

Abstract: In the realm of tensor optimization, the low-rank Tucker decomposition is crucial for reducing the number of parameters and for saving storage. We explore the geometry of Tucker tensor varieties -- the set of tensors with bounded Tucker rank -- which is notably more intricate than the well-explored matrix varieties. We give an explicit parametrization of the tangent cone of Tucker tensor varieties and leverage its geometry to develop provable gradient-related line-search methods for optimization on Tucker tensor varieties. To the best of our knowledge, this is the first work concerning geometry and optimization on Tucker tensor varieties. In practice, low-rank tensor optimization suffers from the difficulty of choosing a reliable rank parameter. To this end, we incorporate the established geometry and propose a Tucker rank-adaptive method that aims to identify an appropriate rank with guaranteed convergence. Numerical experiments on tensor completion reveal that the proposed methods are in favor of recovering performance over other state-of-the-art methods. The rank-adaptive method performs the best across various rank parameter selections and is indeed able to find an appropriate rank.

Citations (2)

Summary

We haven't generated a summary for this paper yet.