Papers
Topics
Authors
Recent
2000 character limit reached

The G-Wishart Weighted Proposal Algorithm: Efficient Posterior Computation for Gaussian Graphical Models

Published 3 Aug 2021 in stat.CO | (2108.01308v2)

Abstract: Gaussian graphical models can capture complex dependency structures among variables. For such models, Bayesian inference is attractive as it provides principled ways to incorporate prior information and to quantify uncertainty through the posterior distribution. However, posterior computation under the conjugate G-Wishart prior distribution on the precision matrix is expensive for general non-decomposable graphs. We therefore propose a new Markov chain Monte Carlo (MCMC) method named the G-Wishart weighted proposal algorithm (WWA). WWA's distinctive features include delayed acceptance MCMC, Gibbs updates for the precision matrix and an informed proposal distribution on the graph space that enables embarrassingly parallel computations. Compared to existing approaches, WWA reduces the frequency of the relatively expensive sampling from the G-Wishart distribution. This results in faster MCMC convergence, improved MCMC mixing and reduced computing time. Numerical studies on simulated and real data show that WWA provides a more efficient tool for posterior inference than competing state-of-the-art MCMC algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.