Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient sampling of Gaussian graphical models using conditional Bayes factors

Published 9 Sep 2014 in q-bio.NC and stat.ME | (1409.2676v1)

Abstract: Bayesian estimation of Gaussian graphical models has proven to be challenging because the conjugate prior distribution on the Gaussian precision matrix, the G-Wishart distribution, has a doubly intractable partition function. Recent developments provide a direct way to sample from the G-Wishart distribution, which allows for more efficient algorithms for model selection than previously possible. Still, estimating Gaussian graphical models with more than a handful of variables remains a nearly infeasible task. Here, we propose two novel algorithms that use the direct sampler to more efficiently approximate the posterior distribution of the Gaussian graphical model. The first algorithm uses conditional Bayes factors to compare models in a Metropolis-Hastings framework. The second algorithm is based on a continuous time Markov process. We show that both algorithms are substantially faster than state-of-the-art alternatives. Finally, we show how the algorithms may be used to simultaneously estimate both structural and functional connectivity between subcortical brain regions using resting-state fMRI.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.